AN ADAPTIVE DOSE FINDING DESIGN (DOSEFIND) USING A NONLINEAR DOSE RESPONSE MODEL

Mike Davenport

Thanks to

Dr. R. K. Elswick Dr. Chris Gennings Dr. Ramesh Ramakrishnan

For support and guidance

Motivation for the DOSEFIND
 How the DOSEFIND Works
 Simulation Plan/Results of DOSEFIND
 Conclusions

DOSEFIND Motivation

- Evaluate a pharmacodynamic (PD) marker that is indicator of efficacy in addition to safety considerations
- Describe a sigmoidal dose response curve using an adaptive approach with a non-linear methodology
- Quickly evaluate and eliminate dose levels below the no effect level (NOEL)
- Potential to provide significant time savings in later Phases of clinical trials development

Motivation for the DOSEFIND
 How the DOSEFIND Works
 Simulation Plan/Results of DOSEFIND
 Conclusions

Clinical Trials Example Data

Clinical Trials Example Data

Illustration (1st Iteration)

Clinical Trials Example Data

Illustration (2nd Iteration)

Clinical Trials Example Data

Illustration (2nd Iteration)

Clinical Trials Example Data

Illustration (3rd Iteration)

Clinical Trials Example Data

Illustration (4th Iteration)

Clinical Trials Example Data

Illustration (5th Iteration)

Clinical Trials Example Data

Illustration Final Curve

How the DOSEFIND Works An Illustration Example Trial n=20, DOSEFIND n=15

Target T_D is 6.14 at a threshold response of 0.55

DOSEFIND estimates T_D as 5 or 6 (5.27 ± 0.44)

DOSEFIND puts all doses in the linear range

The general form of the non-linear model is:

$$\mu = \alpha + \gamma F\left(\mathbf{D}; \mathbf{B}\right)$$

where

D is the set of doses $\mathbf{D} = \{d^{(1)}, \dots, d^{(k)}\}$ and k is the number of dose steps

 μ denotes the unknown effect **B** denotes the vector of unknown parameters and α is the minimum and

 $\alpha + \gamma$ is the maximum unknown effect parameter

Illustrate DOSEFIND with the following 3 models:

Non-linear Logistic

$$\mu = \alpha + \frac{\gamma}{1 + e^{-(\beta_0 + \beta_1 \mathbf{D})}}$$

Michaelis-Menten

$$\mu = \alpha + \frac{\gamma * \mathbf{D}}{\phi + \mathbf{D}}$$

Gompertz

$$\mu = \alpha + \gamma e^{-e(-(\beta_0 + \beta_1 \mathbf{D}))}$$

Calculation of (T_D) for each model:

Logistic: $T_{D} = \frac{\log \left(\mu_{T_{D}} / (\gamma - \mu_{T_{D}}) \right) - \beta_{0}}{\beta_{1}}$

Gompertz:
$$T_{D} = \frac{-\log\left(\log\left(\gamma/\mu_{T_{D}}\right)\right) - \beta_{0}}{\beta_{1}}$$

Michaelis-Menten:
$$T_D = \phi \left(\frac{\mu_{T_D} - \alpha}{\gamma - \mu_{T_D} + \alpha} \right)$$

Motivation for the DOSEFIND
 How the DOSEFIND Works
 Simulation Plan/Results of DOSEFIND
 Conclusions

The four different assignment schemas are:

Initial 3 Dose Levels			All Subsequent Dose levels		
	Active	Placebo		Active	Placebo
(1, 1)	1	1	(1, 1)	1	1
(3, 1)	3	1	(1, 1)	1	1
(1, 1)	1	1	(3, 1)	3	1
(3, 1)	3	1	(3, 1)	3	1

- The shape of the logistic model is modified by choosing different slopes and intercepts:
 - $-\beta_0 = -2.3$ and $\beta_1 = 0.60$, Base Model (SIM 1)
 - $-\beta_0 = -5$ and $\beta_1 = 1.8$, Steep slope (SIM 2)
 - $-\beta_0 = -2.3$ and $\beta_1 = 0.30$, Shallow slope (SIM 3)

Non-Linear Logistic Base Model (R1), Steep Slope (R2) and Shallow Slope (R3)

Gompertz (R1) and Michaelis-Menten (R2) Non-Linear Functions

Expected Values of T_D for the Target Threshold Effect

	Dose Levels					
Target Threshold Effect	SIM 1 Non-Linear Logistic	SIM 2 Steep β ₁	$\frac{\text{SIM 3}}{\text{Shallow}}$ $\frac{\beta_1}{\beta_1}$	SIM 4 Gompertz	SIM 5 Michaelis- Menten	
0.55	6.14	3.54	12.36	6.83	7.69	

Fixed Dose Simulations

Results from SIM 1 (10 simulations of size n=100 each) for four sampling scenarios

D	esired Response	: 0.55 and Desire	ed Target Dose: 6.14	
Run*	Mean Pa	arameter Estimate	es and Standard Erro	r
	T _D	D _N	¹ ⁄2-width 95% Cl	ARE
1-1, 1-1	6.18 (0.060)	9.00 (0.306)	0.639 (0.017)	50%
3-1, 1-1	6.09 (0.047)	7.98 (0.201)	0.583 (0.004)	47%
1-1, 3-1	6.21 (0.035)	6.99 (0.108)	0.466 (0.017)	37%
3-1, 3-1	6.15 (0.036)	6.40 (0.082)	0.435 (0.015)	35%

ARE: Asymptotic Relative Efficiency WRT a "fixed dose" design Fixed Dose "Base" model σ^2 =0.596

Results from SIM 2 (10 simulations of size n=100 each) for four sampling scenarios

De	sired Response:	0.55 and Desire	d Target Dose: 3.54				
Run*	Mean Pa	Mean Parameter Estimates and Standard Error					
	T _D	D _N	1⁄2-width 95% CI	ARE			
1-1, 1-1	3.72 (0.052)	5.19 (0.031)	0.192 (0.006)	35%			
3-1, 1-1	3.67 (0.023)	5.02 (0.014)	0.150 (0.004)	29%			
1-1, 3-1	3.69 (0.038)	5.09 (0.040)	0.126 (0.006)	24%			
3-1, 3-1	3.71 (0.037)	5.01 (0.008)	0.089 (0.003)	18%			

Fixed Dose "Steep Slope" model σ^2 =0.236

Results from SIM 3 (10 simulations of size n=100 each) for four sampling scenarios

De	Desired Response: 0.55 and Desired Target Dose: 12.36							
Run*	Mean Pa	rameter Estimates	s and Standard Error	,				
	T _D	D _N	1⁄2-width 95% CI	ARE				
1-1,1-1	12.34 (0.0878)	16.87 (0.4558)	0.847 (0.013)	25%				
3-1,1-1	12.23 (0.1000)	16.09 (0.4480)	0.833 (0.007)	25%				
1-1,3-1	12.38 (0.0644)	11.90 (0.4026)	0.728 (0.019)	22%				
3-1,3-1	12.31 (0.0506)	11.51 (0.4277)	0.704 (0.017)	21%				

Fixed Dose "Shallow Slope" model σ^2 =1.639

Results from simulation (10 simulations of size n=100 each) for the Gompertz (SIM 4), the Michaelis-Menten Nonlinear (SIM 5) and the Non-Linear Logistic with Safety Adjustment (SIM 6) Models

Desired Response: 0.55 and Desired Target Dose: 6.83, 7.69 and 6.14						
Run*	Mean Parameter Estimates and Standard Error					
	Τ _D	1⁄2-width 95% CI	σ^2			
Gompertz	6.83 (0.031)	0.678 (0.019)	0.33 (0.009)			
Michaelis- Menten	7.44 (0.058)	0.738 (0.02)	0.36 (0.010)			
Non-linear Logistic + Safety	6.22 (0.055)	0.473 (0.02)	0.22 (0.001)			

Sampling Schema (1-1,3-1)

Simulations that stopped prior to convergence of the confidence interval

	Stopping Rates for Each Simulation							
Run	SIM 1 Non-Linear Logistic	SIM 2 Steep β ₁	SIM 3 Shallow β_1	SIM 4 Gompertz	SIM 5 Michaelis- Menten			
1-1, 1-1	1.6%	0%	24%	-				
3-1, 1-1	0.4%	0%	24%	-	-			
1-1, 3-1	0%	0%	1.5%	4.5%	3.3%			
3-1, 3-1	0%	0%	1.4%	-				

* Percentage of runs that stopped due to an adverse event

Simulation including Probability of a DLT

Non-Linear Logistic (R1) with Adverse Event (AE) Probability Curve

Simulations that stopped prior to convergence of the confidence interval

	Stopping Rates for Each Simulation						
Run	SIM 1 Non-Linear Logistic	SIM 2 Steep β ₁	SIM 3 Shallow β ₁	SIM 4 Gompertz	SIM 5 Michaelis- Menten	SIM 6 Non-Linear Logistic + Safety	
1-1, 1-1	1.6%	0%	24%	-	-	-	
3-1, 1-1	0.4%	0%	24%	-	-		
1-1, 3-1	0%	0%	1.5%	4.5%	3.3%	19.8%*	
3-1, 3-1	0%	0%	1.4%			-	

* Percentage of runs that stopped due to an adverse event

Comparison of Relative Efficiency versus Relative Cost, for Base (SIM 1), Steep (SIM 2) and Shallow (SIM 3) Nonlinear Logistic Models

Conclusions

Developed an Adaptive Method that:

- produces a dose response curve profile of a desired PD parameter
- the choice of the functional form is not sensitive to the estimation of the T_D
- is more efficient as measured by ARE to a "fixed dose" design
- is more cost effective as measured by sample size to a "fixed dose" design

Conclusions

- Uses general non-linear 3 and 4 parameter models
- General structure for variance
- Use early trials in humans to assess efficacy as well as safety

Background: Modified CRM Design

Piantadosi et.al. 1997

- Model: Pr[toxicity] = $\frac{1}{1+e^{-\beta(d-d_{50})}}$

- Logistic regression
- Not using fixed set of dose levels
- Assigns patients based on new d30
- Does not estimate the variance of the target dose
- Based on observance of toxicity

The variance of Y is assumed to be a function of the mean, that is,

 $\operatorname{Var}(Y) = \tau V(\mu)$

Under the premise that the observed variance is larger in the "linear" portion of the dose response curve for responses between zero and one, $V(\mu)$ is assumed to follow $\mu(1-\mu)$

Let $\mathbf{G}_i = \alpha + \gamma \mathbf{F}(d^{(i)}, \mathbf{B})$ and let **H** be the

partial derivatives from the (T_D) equations,

then Σ and $Var(T_D) = H\Sigma H'$ are derived

using the quasi-likelihood approach found in

Seber and Wild (1989)

The estimate of the target dose (T_D) for the general nonlinear form is:

$$T_{D} = \frac{F^{-1}(((\mu_{T_{D}} - \alpha)/\gamma) - \beta_{0})}{\beta_{1}}$$

Illustration Results for the DOSEFIND Method

Steps	β ₀	β ₁	γ	Actual Dose	Target Dose	Variance	¹∕₂ 95% CI
1	-1.0698	1.1054	0.33145	_	10.0		-
2	-2.07356	0.40014	0.81388	7.0176	7.0	0.7612	1.800
3	-2.05163	0.49431	0.76334	6.0664	6.0	0.5695	1.254
4	-2.10020	0.55409	0.74503	5.6615	6.0	0.2968	0.633
5	-2.1183	0.60724	0.73635	5.2707	5.0	0.2121	0.444

Results from SIM 7 (10 simulations of size n=100 each) for fixed dose levels

Desired Response: 0.55 and Desired Target Dose: 6.14, 3.54 and 12.36					
Run	Mean Param	eter Estimates and Star	ndard Error		
	Τ _D	1/2-width 95% CI	σ^2		
Logistic	6.21 (0.0319)	1.212 (0.0108)	0.596 (0.0053)		
Steep β1	3.62 (0.0101)	0.481 (0.0035)	0.236 (0.0017)		
Shallow β1	12.62 (0.0588)	3.335 (0.9366)	1.639 (0.4603)		

Comparison of Bias-Squared versus Mean Square Error for Nonlinear Logistic Models

